Search results for "Parabolic cylinder function"
showing 8 items of 8 documents
Indefinite integrals of products of special functions
2016
ABSTRACTA method is given for deriving indefinite integrals involving squares and other products of functions which are solutions of second-order linear differential equations. Several variations of the method are presented, which applies directly to functions which obey homogeneous differential equations. However, functions which obey inhomogeneous equations can be incorporated into the products and examples are given of integrals involving products of Bessel functions combined with Lommel, Anger and Weber functions. Many new integrals are derived for a selection of special functions, including Bessel functions, associated Legendre functions, and elliptic integrals. A number of integrals o…
More indefinite integrals from Riccati equations
2019
ABSTRACTTwo new methods for obtaining indefinite integrals of a special function using Riccati equations are presented. One method uses quadratic fragments of the Riccati equation, the solutions of...
A third integrating factor for indefinite integrals of special functions
2020
An integrating factor f ~ x is presented involving the terms in y ′ ′ x and q x y x of the general homogenous second-order linear ordinary differential equation. The new integrating factors obey se...
Indefinite integrals of special functions from inhomogeneous differential equations
2018
A method is presented for deriving integrals of special functions which obey inhomogeneous second-order linear differential equations. Inhomogeneous equations are readily derived for functions sati...
Analysis of a Parabolic Cross-Diffusion Semiconductor Model with Electron-Hole Scattering
2007
The global-in-time existence of non-negative solutions to a parabolic strongly coupled system with mixed Dirichlet–Neumann boundary conditions is shown. The system describes the time evolution of the electron and hole densities in a semiconductor when electron-hole scattering is taken into account. The parabolic equations are coupled to the Poisson equation for the electrostatic potential. Written in the quasi-Fermi potential variables, the diffusion matrix of the parabolic system contains strong cross-diffusion terms and is only positive semi-definite such that the problem is formally of degenerate type. The existence proof is based on the study of a fully discretized version of the system…
Existence and uniqueness for a degenerate parabolic equation with 𝐿¹-data
1999
In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L 1 ( Ω ) L^{1}(\Omega ) , u t = d i v a ( x , D u ) in ( 0 , ∞ ) × Ω , \begin{equation*}u_{t} = \mathrm {div} \mathbf {a} (x,Du) \quad \text {in } (0, \infty ) \times \Omega , \end{equation*} − ∂ u ∂ η a ∈ β ( u ) on ( 0 , ∞ ) × ∂ Ω , \begin{equation*}-{\frac {{\partial u} }{{\partial \eta _{a}}}} \in \beta (u) \quad \text {on } (0, \infty ) \times \partial \Omega ,\end{equation*} u ( x , 0 ) = u 0 ( x ) in Ω , \begin{equation*}u(x, 0) = u_{0}(x) \quad \text {in }\Omega ,\end{equation*} where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis, ∂ / …
New special function recurrences giving new indefinite integrals
2018
ABSTRACTSequences of new recurrence relations are presented for Bessel functions, parabolic cylinder functions and associated Legendre functions. The sequences correspond to values of an integer variable r and are generalizations of each conventional recurrence relation, which correspond to r=1. The sequences can be extended indefinitely, though the relations become progressively more intricate as r increases. These relations all have the form of a first-order linear inhomogeneous differential equation, which can be solved by an integrating factor. This gives a very general indefinite integral for each recurrence. The method can be applied to other special functions which have conventional …
Variational parabolic capacity
2015
We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.